The formation of disulphide bonds between the correct pairs of cysteine residues is essential for the folding and stability of many proteins that are secreted or localized to organelles of the secretory pathway. Nearly 40 years ago, the seminal work of Anfinsen and colleagues on the in vitro refolding of reduced, denatured ribonuclease A demonstrated that native disulphide bond formation can occur spontaneously. The early observation that disulphide bond formation proceeded much more slowly in air than in living cells implied the existence of catalysts for oxidative protein folding.

The minimal requirements for efficient oxidative refolding in vitro have since been defined as a redox buffer containing both oxidizing and reducing equivalents as well as an enzymatic catalyst for thiol-disulphide exchange. Standard assays for oxidative refolding employ glutathione redox buffers in which oxidized glutathione (GSSG) provides the oxidizing equivalents necessary for protein disulphide bond formation. Under these conditions, the redox potential of the assay buffer, defined by the ratio [GSH]/[GSSG], determines the overall rate of oxidative refolding.

The search for enzymatic catalysts of oxidative refolding led to the isolation of protein disulphide isomerase (PDI). Intensive investigation of the activities of PDI in vitro has since shown that the enzyme can catalyse the formation, reduction or isomerization of disulphide bonds depending upon the redox conditions of the assay and the nature of the substrate protein. The activity of PDI depends on two pairs of cysteines, each of which are found in the motif Cys-xa-xb-Cys within a domain homologous to thioredoxin. When the active-site cysteines of PDI are present in dithiol (reduced) form, the enzyme is suited for catalysis of disulphide reshuffling. PDI is reduced in those redox buffers adjusted to give optimal refolding rates in vitro, and this correlation has drawn attention to the isomerase activity of the enzyme. A role for PDI in the catalysis of native disulphide bond formation in the endoplasmic reticulum (ER) was first established by mutational analysis in yeast, where the PDI gene was shown to be essential for cell viability and for oxidative protein folding.

In eukaryotic cells, protein disulphide bond formation occurs within the lumen of the ER, where protein oxidation initiates upon the translocation of nascent peptide chains into the ER lumen. The redox state of the ER is more oxidizing than that of the cytosol, a difference that favours the formation of structural protein disulphide bonds, and that is reflected in the relatively high intraluminal concentration of GSSG. A net influx of oxidizing equivalents into the ER lumen is needed to support the rapid transit of secretory proteins through the ER, and to maintain a high concentration of GSSG within the ER lumen. However, until very recently, the source of oxidizing equivalents utilized for disulphide bond formation in the ER was unclear. Genetic analysis in Saccharomyces cerevisiae has now defined the core pathway for protein disulphide bond formation in the eukaryotic ER.

A pathway for protein disulphide bond formation in the ER

A genetic dissection of oxidative protein folding in yeast began with the isolation of an essential and conserved gene, ERO1 (ER oxidation), encoding a novel ER membrane protein required for protein oxidation in the ER (Table 1). A temperature-sensitive allele of ERO1 was identified in a screen for mutants defective in the export from the ER of secretory proteins containing disulphide bonds. Mutations in ERO1 were also isolated in a screen for S. cerevisiae strains with diminished oxidative capacity, a property reflected by increased sensitivity to the reductant dithiothreitol (DTT). Secretory proteins that would normally acquire intramolecular disulphide bonds remain completely reduced in the conditional ero1-1 mutant. Ero1p appears to introduce oxidizing equivalents necessary for protein disulphide bond formation into the ER lumen, a conclusion supported by the observation that a membrane-permeable thiol oxidant can substitute for ERO1 function. Moreover, overexpression of ERO1 increases the oxidative capacity of the ER (Table 1). Recent findings indicate that Ero1p transfers disulphide bonds directly to PDIp. Although the

The authors are in the Dept of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA. E-mail: dkaiser@mit.edu
active-site cysteines of yeast Pdi1p are found predominantly in disulphide form in vivo, those cysteines appear in dithiol form in the conditional ero1-1 mutant (Table 1)16. Disulphide-linked complexes between Ero1p and Pdi1p have been captured from yeast cells, and these complexes are likely to represent intermediates in the transfer of disulphide bonds from Ero1p to Pdi1p16 (Fig. 1).

The isolation of Ero1p–Pdi1p mixed disulphides implicated Pdi1p as a vital intermediate in the flow of disulphide bonds from Ero1p to secretory proteins. Consistent with this model, the defect in protein folding observed in cells lacking Pdi1p was traced to a defect in protein oxidation, indicating that Pdi1p is necessary for the efficient formation of protein disulphide bonds in the ER16,17 (Table 1). The identification of active-site mutants of Pdi1p that diminish the overall oxidative capacity of the cell further highlights the significance of the oxidase activity of Pdi1p in vivo associated with the formation of mixed disulphides with Ero1p or glutathione.

The role of glutathione in oxidative protein folding in the ER

The thiol–disulphide redox status of intralumenal glutathione has long been the focus of considerations of how relatively oxidizing conditions are established in order to transmit oxidizing equivalents, mixed disulphides with small molecules such as glutathione should not be necessary as intermediates in disulphide bond formation. Mutational analysis in yeast has suggested an essential role for Pdi1p in the isomerization of non-native disulphide bonds, based on the behaviour of a Cys-xa-xb-Ser active-site mutant of PDI. This form of PDI retains isomerase but lacks detectable oxidase or reductase activity in vitro19. Nevertheless, overexpression of Cys-xa-xb-Ser PDI can restore viability to some cells lacking PDI1p, suggesting that only the isomerase activity of Pdi1p is essential for yeast viability9,19. How can these studies be reconciled with observations placing Pdi1p in a pathway for protein oxidation? It is possible that, in the absence of Pdi1p, other relatively inefficient sources of oxidase activity promote protein disulphide bond formation in the ER. This seems quite likely since several oxidoreductases homologous to Pdi1p are present in the ER lumen20–22 (Table 2). A second possibility is that the oxidase activity of Pdi1p is indeed essential, but that Cys-xa-xb-Ser PDI retains some oxidase activity in vivo associated with the formation of mixed disulphides with Ero1p or glutathione.

The role of glutathione in oxidative protein folding in the ER

The thiol–disulphide redox status of intraluminal glutathione has long been the focus of considerations of how relatively oxidizing conditions are established
within the ER. Glutathione is the major small-molecule redox buffer in the ER, and the ratio of the concentration of GSH to GSSG in the ER (1:1 to 3:1) is similar to that found in redox buffers affording optimal rates for oxidative refolding in vitro. From these observations, it was natural to suppose that GSSG serves as the primary source of oxidizing equivalents during disulfide bond formation in vivo, as it does in vitro. Accordingly, disulfide bonds in newly synthesized proteins could be thought to form through thiol-disulfide exchange reactions with GSSG or with oxidases dependent upon GSH as a source of oxidizing equivalents.

Recent studies in yeast have disproved this hypothesis. These studies relied in part upon a yeast mutant that is devoid of intracellular glutathione owing to disruption of GSH1, the gene encoding the mutant that is devoid of intracellular glutathione. These studies relied in part upon a yeast mutant that is devoid of intracellular glutathione owing to disruption of GSH1, the gene encoding the thiol-disulfide reductase PDI. The functional analysis of Ero1p, Pdi1p and glutathione offers a new perspective on how protein disulfide bond formation occurs in the ER. The emerging view is that disulfide bond formation in the ER proceeds by the sequential transfer of oxidizing equivalents between proteins rather than by transfer from GSSG. An important implication of this view is that the flow of oxidizing equivalents might be controlled more by the kinetics of protein-protein interactions than by equilibration of protein dithiols and disulfides with the glutathione redox buffer. Thus, the actual redox status of a protein in the ER might be determined primarily by the relative reactivity with other redox-active proteins and might differ significantly from that predicted from equilibrium measurements of redox potential relative to glutathione. In the case of PDH itself, the redox potential as measured by equilibrium with glutathione is nearly equivalent to the thiol-disulfide redox potential as measured by equilibrium with glutathione. In the case of PDH itself, the redox potential as measured by equilibrium with glutathione is nearly equivalent to the thiol-disulfide redox potential as measured by equilibrium with glutathione.
status of glutathione in the ER12,17, leading to the expectation that, if PDI within the ER were in equilibrium with the glutathione redox buffer, it should partition equally between the dithiol and disulphide forms6. However, direct measurement of the redox status of Pdi1p \textit{in vivo} reveals that the enzyme is almost entirely in the disulphide form16. This disparity can be explained if Pdi1p is not in equilibrium with the glutathione redox buffer but instead the redox status of Pdi1p represents a steady-state condition set by efficient oxidation of Pdi1p by Ero1p and relatively inefficient reduction of Pdi1p by glutathione and protein thiols. Thus the behaviour of PDI in standard \textit{in vitro} assay conditions for oxidative protein refolding might differ fundamentally from that in the physiological environment of the ER. In vitro, the inefficiency of re-oxidation of PDI by GSSG might severely restrict the capacity of the enzyme to act as an oxidase28. In vivo, however, Ero1p activity appears to keep PDI in an oxidized state poised for the transfer of disulphide bonds to substrate proteins.

Table 2 – Eukaryotic Homologues of PDI

<table>
<thead>
<tr>
<th>Protein</th>
<th>Size (kDa)a</th>
<th>Thioredoxin-like domains</th>
<th>Acidic regions</th>
<th>Distinctive features</th>
<th>Shared features</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>with CXXC (a type)</td>
<td>without CXXC (b type)b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. cerevisiae homologues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pdi1p</td>
<td>58</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>Essential for viability</td>
<td>SS, HDEL, CHO</td>
</tr>
<tr>
<td>Mpd1p</td>
<td>36</td>
<td>1</td>
<td>1</td>
<td></td>
<td>SS, HDEL, CHO</td>
<td>20</td>
</tr>
<tr>
<td>Mpd2p</td>
<td>32</td>
<td>1</td>
<td>–</td>
<td></td>
<td>SS, HDEL, CHO</td>
<td>21</td>
</tr>
<tr>
<td>Eps1p</td>
<td>58</td>
<td>2</td>
<td>2</td>
<td></td>
<td>Cys-x-x-Ser active sites</td>
<td>SS, HDEL, CHO</td>
</tr>
<tr>
<td></td>
<td>81</td>
<td>1</td>
<td>1</td>
<td></td>
<td>ER membrane protein</td>
<td>SS, KIIXXX, CHO</td>
</tr>
<tr>
<td>Mammalian homologues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDI</td>
<td>55</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>General peptide-binding site mapped to \textit{b} domain</td>
<td>SS, KDEL</td>
</tr>
<tr>
<td>Ehrp72</td>
<td>71</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>Calcium binding</td>
<td>SS, KEEL</td>
</tr>
<tr>
<td>Ehrp57</td>
<td>54</td>
<td>2</td>
<td>2</td>
<td></td>
<td>Interaction with nascent monoglycosylated glycoproteins</td>
<td>SS, QEDL</td>
</tr>
<tr>
<td>PS</td>
<td>46</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td>SS, KDEL</td>
</tr>
<tr>
<td>PDII</td>
<td>57</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>SS, KEEL</td>
</tr>
<tr>
<td>PDIIp</td>
<td>55</td>
<td>2</td>
<td>2</td>
<td></td>
<td>Pancreas-specific expression</td>
<td>SS, KEEL, CHO</td>
</tr>
</tbody>
</table>

aSizes for the yeast PDI proteins refer to the predicted molecular weights of each gene product based on the full DNA sequence and will not reflect signal-sequence cleavage or glycosylation of the proteins \textit{in vivo}.

bThe presence of \textit{b}-type domains in mammalian homologues of PDI is inferred by sequence comparisons to known thioredoxin-fold domains of PDI proteins39. \textit{b}-type domains in the yeast homologues of PDI are inferred by sequence conservation with Pdi1p in regions corresponding to the \textit{b}-type domains of mammalian PDI. Any structural similarities between these regions and thioredoxin remain to be determined.

Abbreviations: CHO, potential glycosylation acceptor sites; SS, signal sequence. HDEL, KIIXXX, KEEL and QEDL refer to the amino acid sequence of potential endoplasmic reticulum retention signals.

Redox balance in the endoplasmic reticulum (ER). Oxidation of glutathione competes with protein oxidation in the ER. Reduced glutathione (GSH) imported into the ER lumen engages in thi–disulphide exchange reactions, leading to the net reduction of secretory proteins and the net oxidation of GSH. GSH could interact with ER oxidoreductases and proteins folding in the ER. Reducing equivalents contributed by GSH may be important for maintaining optimal redox conditions for protein folding, by counterbalancing the flow of oxidizing equivalents through Ero1p (blue arrows). GSSG, oxidized glutathione; PDI, protein disulphide isomerase; 2GSH, 2 molecules of GSH.

FIGURE 3

Similarities in eukaryotic and prokaryotic disulphide bond forming pathways

The pathway for protein disulphide bond formation in the bacterial periplasm provides a useful analogy for the
protein oxidation system in eukaryotes. Two enzymes drive disulphide bond formation in periplasmic proteins: the thioredoxin-like thiol-disulphide oxidoreductase DsbA and the cytoplasmic membrane protein DsbB (Table 1). The active-site cysteines of DsbA form a disulphide bond that is transferred directly to periplasmic proteins37, after which DsbB is efficiently re-oxidized by DsbC (Fig. 4). This oxidation pathway proceeds entirely through the protein-to-protein transfer of oxidizing equivalents via thiol-disulphide exchange, as demonstrated by the capture of disulphide-linked heterodimers between DsbA and DsbB32,38. A small-molecular intermediate such as glutathione is unlikely to serve as an intermediate in this pathway, in part because the permeability of the outer membrane of Gram-negative bacteria does not allow for the concentration of low-molecular-weight thiol compounds in the periplasm.

In both prokaryotic and eukaryotic systems, a membrane-associated oxidoreductase is thus implicated in the direct transfer of disulphide bonds to a soluble, thioredoxin-like oxidoreductase. Aside from the fact that the ER contains glutathione and the periplasm does not, the similarities between the key components of eukaryotic and prokaryotic disulphide-bond-forming systems are striking. For example, mutations in both PDI1 and dsbA disrupt the oxidation of secretory proteins, and PDI can complement mutations in dsbA when targeted to the bacterial periplasm39,40. The ero1 mutant of Saccharomyces cerevisiae appears primarily defective in re-oxidation of Pdi1p41, and, in similar fashion, the Escherichia coli dsbB mutant is primarily defective in re-oxidation of DsbA38 (Table 1).

In the bacterial periplasm, the isomerization of non-native disulphide bonds proceeds through a separate pathway analogous to the DsbA–DsbB system. Two components of this pathway are the periplasmic oxidoreductase DsbC and the cytoplasmic membrane protein DsbD (Fig. 4 and Table 1). DsbC is likely to serve as a catalyst for disulphide reshuffling in vivo because the loss of DsbC selectively disrupts the folding of those proteins with multiple disulphide bonds32. Consistent with activity as an isomerase, the active-site cysteines of DsbC are found in dithiol form. Maintenance of DsbC in dithiol form requires a net influx of reducing equivalents from DsbD (Fig. 4), possibly to counteract a tendency for DsbC to be oxidized by DsbB32,38. Alternatively, if catalysis by DsbC involves the reductive cleavage of inappropriate disulphide bonds with the concomitant oxidation of DsbC, then DsbD might be necessary to regenerate reduced, active DsbC32. In this case, complete disulphide bond formation in the substrate protein would require an additional oxidation step likely to be performed by DsbB32. Interestingly, reducing equivalents delivered to DsbC from DsbD are derived from cytoplasmic thioredoxin, indicating that DsbD transmits reducing potential across the cytoplasmic membrane38 (Fig. 4).

The family of PDI homologues

Several oxidoreductases homologous to PDI are found in the ER of both yeast and mammalian cells (Table 2). These PDI homologues have been implicated in diverse processes including not only oxidative protein folding but also the assembly of multi-protein complexes and the recognition of misfolded proteins in the ER42,43. Eps57 and Eps72 are mammalian homologues of PDI induced under conditions of ER stress42 (Table 2). Yeast homologues of PDI expressed in the ER lumen are Mpd1p, Mpd2p, Eug3p and Epplp20,22,40. Although Mpd1p is the only oxidoreductase strictly required for yeast viability, overproduction of any one of these enzymes can at least partially substitute for the loss of PDI120,22,40. The Eps7 gene has recently been implicated in the ER retention of a misfolded variant of Pma1p, the plasma membrane ATPase42.

One attractive possibility is that individual members of the PDI family might be dedicated to the catalysis of disulphide bond formation, reduction or isomerization in vivo, just as DsbA and DsbC work in separate pathways to catalyse disulphide bond rearrangements. For example, Mpd2p might serve as a dedicated oxidase, given that the enzyme is a substrate for Eps1p42. If homologues of PDI do serve as dedicated catalysts of specific redox reactions, then an intriguing question arises as to how their specificity could be established.

![Figure 4](image_url)

Figure 4

Pathways for protein disulphide bond formation and isomerization in the Escherichia coli periplasm. Secreted proteins are oxidized through thiol-disulphide exchange reactions with the soluble oxidoreductase DsbA, which is then re-oxidized by the cytoplasmic membrane protein DsbB. Under aerobic growth conditions, electrons flow from DsbB to molecular oxygen via ubiquinone (Q) and cytochromes b or c1 oxidase. The oxidoreductase DsbC catalyses disulphide bond rearrangements. Electrons flow from cytoplasmic thioredoxin to DsbC via the cytoplasmic membrane protein DsbD.
Thioredoxin-like oxidoreductases localized to the ER lumen catalyse disulphide bond rearrangements.

In (a), reduced glutathione (GSH) imported into the ER lumen provides reducing equivalents needed to maintain the isomerase(s) in the active, dithiol form. In (b), a membrane-located oxidoreductase transmits electrons to isomerase(s) from cytosolic reductants.

The catalytic efficiency of Ero1p towards different homologues of PDI might vary widely and in part determine the catalytic niche of each enzyme. The redox potential of the active site of each enzyme could also be adapted to favour oxidase or reductase activity. However, the exact redox potential of an enzyme might not fully account for its functional specificity. For example, DsbA and DsbC have similar redox potentials yet appear in different oxidation states and perform discrete functions in the bacterial periplasm. In the ER, functional distinctions among the redox activities of PDI homologues must be maintained in the presence of a glutathione redox buffer. It is possible that the PDI homologues might undergo thiol–disulphide exchange reactions with molecules such as Ero1p much more rapidly than they do with glutathione, kinetically isolating glutathione from certain disulphide-bond-forming pathways.

Individual PDI homologues have been shown to interact physically with discrete classes of secretory proteins, adding yet another layer to the potential specificity of these enzymes in vivo. Such interactions can be independent of oxidoreductase activity and in some cases appear to involve thioredoxin-like domains that lack a Cys-x-a-x-Cys motif (Table 2). Mammalian ERP57 provides an example of an enzyme interacting with a specific class of substrates. This enzyme engages directly in thio-disulphide exchange reactions with nascent glycoproteins folding in the ER but interacts only with monoglycosylated substrates via a tripartite interaction with calnexin or calreticulin. Association with calnexin stimulates the isomerase activity of ERP57 in vitro.

There are serious obstacles to dissecting the specific functions of individual members of the PDI family through biochemical or genetic analysis. These enzymes can, according to how an assay is configured, display activity either as oxidases, reductases or isomerases in vitro. The potential for functional redundancy among these enzymes complicates genetic analysis, especially because the loss of one of these gene products, through the accumulation of misfolded proteins, often leads to the general induction of ER oxidoreductases and chaperones with the unfolded protein response (UPR). Thus, defects in oxidative protein folding associated with the loss of any one PDI homologue might be largely obscured through a compensatory induction by the UPR of enzymes with redundant activities.

Models for disulphide bond isomerization in eukaryotes

The similarities observed thus far between eukaryotic and prokaryotic disulphide-bond-forming systems suggest that commonalities might also be found between disulphide bond isomerization pathways in eukaryotes and the DsbC–DsbD system in prokaryotes. Eukaryotic secretory proteins typically contain more disulphide bonds than their prokaryotic counterparts, indicating that there might be an even greater need for disulphide bond reducing or reshuffling functions in the ER than in the periplasm. However, genetic tests for the requirements for the oxidative folding of proteins with multiple disulphide bonds have not yet been developed in eukaryotes, so the components of isomerization pathways in the ER remain unclear. PDI and some subset of the PDI homologues have not yet been developed in eukaryotes, so the components of isomerization pathways in the ER remain unclear. PDI and some subset of the PDI homologues might be needed in addition to PDI1p to catalyse disulphide reshuffling in the yeast ER. Egi1p is a strong candidate for a dedicated isomerase in yeast as the active sites of this enzyme have the sequence Cys-x-x-Cys-Ser, a configuration that should preclude activity as an oxidase or reductase. GSH imported into the ER lumen could serve a physiological role analogous to that of prokaryotic DsbD, by keeping isomerases in their reduced, active form.

Where do the oxidizing equivalents come from? Although Ero1p appears to be the key conduit for introducing oxidizing equivalents into the ER lumen, it remains unclear how Ero1p itself is re-oxidized. Because Ero1p engages in thio-disulphide exchange with PDI1p, the identification of one or more
ubiquinone associated with either cytochrome or cytochrome containing terminal oxidases then shuttle electrons an enzymatic pathway for protein disulfide bond formation in the ER membrane are responsible for sterol and unsaturated fatty acid biosynthesis. Both systems transfer electrons directly to molecular oxygen via intracellular pools of haem or ubiquinone and menaquinone will disrupt the flow of oxidizing equivalents into the DsbB–DsbA system. More-over, all of these electron transport chains are thought to be oriented to the cytosolic face of the ER, so, if they are in fact coupled to re-oxidation of Ero1p, then a lipid-soluble small-molecule electron acceptor might be needed to shuttle between the lumenal and cytosolic leaflets of the ER membrane. As yet, a small-molecule electron acceptor for re-oxidation of Ero1p has not been identified. Because Ero1p behaves like an integral membrane protein, it is also possible that a portion of Ero1p has direct access to proteins like an integral membrane protein, it is also possible that a portion of Ero1p has direct access to proteins involved in ER quality control in yeast. References

Stem cells show their potential

Sally Lowell

The past year has seen some dramatic breakthroughs in stem cell research. The January 2000 Keystone conference brought together researchers ranging from developmental biologists to clinical haematologists to discuss progress in this exciting field. Despite these diverse backgrounds, several common themes emerged during the conference.

Fate decisions

Stem cells are defined by their ability to self-renew and to generate differentiated cells. They produce all the tissue types that make up an adult organism during development, and are responsible for the renewal and repair of adult tissues, such as the blood, the lining of the gut, and the epidermis.

How is diversity generated in the daughters of stem cells? It is easy to see how invariant asymmetric cell divisions could always generate one stem and one non-stem daughter. However, most strategies are based on the nuclear asymmetricity, with cell fate being responsive to extrinsic factors in the local environment. A well-studied example of an invariant strategy is the asymmetrical localization of cell fate determinants, such as numb, within a pre-embryonic precursor cell (Fig. 1). This, together with correct orientation of the mitotic spindle, generates daughters with distinct identities. The machinery that directs asymmetric cell division and specifies localization is being uncovered in genetically tractable organisms such as Drosophila, Caenorhabditis elegans and yeast. It now seems that this machinery could be conserved in vertebrates. S. Temple (Albany, USA) has demonstrated, by using long-term time-lapse microscopy, that mouse cortical neuronal precursors follow stereotyped reiterative asymmetric cell divisions that correlate with asymmetric localization of the mouse homologue of numb.

Extra signals that maintain Drosophila germine stem cells, such as the nuclear factor Dpp, are provided by a specialized somatic microenvironment within the ovary, a ‘stem cell niche’ H. Lin (Durham, USA) has now found a PIF-1 homologue that is associated with the male germline in vertebrates.

Feedback mechanisms also influence the balance of two different fates within a population: For example, the signalling protein Delta, expressed on differentiating neurons, suppresses differentiation of neighbouring precursor cells. In newly discovered variations on this theme, Delta directs neural crest stem cells to differentiate into glia.